Course Title	BIOLOGY	FOR	ENGIN	NEERS	5	B. Tech. CE,ME & EEE -III Sem ECE & CSE - IV Sem					
Course Code	Category	He	ours/We	ek	Credits	Μ	aximum 1	Marks			
1823301	BSC	L	Т	Р	С	Continuous End					
		2			2	30	70	100			
Mid Exam Du Course Object				End Exam	Duration	n: 3Hrs					
 living o Brief in Underst living o organist How bit 	rganism. Applic troduction to hu anding the here organisms and	ation of man phy ditary u how th plied in	certain vsiology nits, that ey repli	bio mole , which t is gene icate ar	ecules in In is essentia es and gen- nd pass a ing differe	ndustry. l for bioengine etic materials (nd preserve v nt technology,	ering field DNA and ital infor for produc	RNA) present in mation in living			
Course Outco	mes: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to				
	e the cells, its st ification of livin			ction, an	d Differen	t types of cells	and basis	for			
CO 2 Expla	Explain about biomolecules its structure and function and their role in a living organism										

UNIT-I

Demonstrate the concept of biology and its uses in combination with different technologies for

Illustrate about genes and genetic materials (DNA & RNA) present in living organisms and how

Introduction to Basic Biology

CO 3

CO 4

Cell: What is a Cell, Cell theory, Cell shapes, structure of a Cell, Cell cycle chromosomes The Plant Cell and animal Cell, protoplasm, prokaryotic and eukaryotic Cell, Plant Tissue and Animal Tissue. Brief introduction to five kingdoms of classification.

How biomolecules are useful in Industry & explain about human physiology.

production of medicines and production of transgenic plants and animals.

they replicate, transfer & preserve vital information in living organisms.

<u>UNIT-II</u>

Introduction to Bio-molecules

Carbohydrates, proteins, Amino acid, nucleic acid (DNA and RNA) and their types. Enzymes and their application in Industry. Large scale production of enzymes by Fermentation.

UNIT-III

Human Physiology

Nutrition (Classes of nutrients or food substances), Digestive systems, Respiratory system (two kinds of respiration – aerobic and anaerobic) Respiratory organs, respiratory cycle. Excretory system

UNIT-IV

Genes, Replication of DNA, And Introduction to recombinant DNA Technology:

Prokaryotic gene and Eukaryotic gene structure, gene replication, Transcription and Translation in Prokaryote and Eukaryote and synthesis of protein in Eukaryotes. Recombinant DNA technology and cloning introduction.

UNIT-V

Application of Biology

Brief introduction to Production of vaccines, Enzymes, antibodies, Cloning in microbes, plants and animals, Basics of biosensors, biochips, Bio fuels, and Biosensors. What is Tissue engineering? And its application, transgenic plants and animals, Bio engineering (production of artificial limbs, joints and other parts of body).

Text Books:

- 1. Cell and Molecular Biology-P.K.Gupta
- 2. Cell Biology-Verma and Agarwal
- 3. Cell Biology-Rastogi
- 4. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.
- 5. T Johnson, Biology for Engineers, CRC press, 2011 Molecular Biology and Biotechnology 2nd ed. J.M. Walker and E.B. Gingold. Panima Publications. PP 434.

Reference Books:

- 1. AlbertsEt.Al. The molecular biology of the cell, 6/e, Garland Science, 2014
- De Robertis EDP & EMF De Robertis. 2001. Cell and Molecular biology. Lippincott Williams &Wilkins.Bombay.
- 3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012 Principles of Biochemistry. 2nd ed. 1993. A.L. Lehninger, D.L.Nelson.M.Cox. Paniama Publications. PP. 1090.
- 5. Harper's biochemistry. 1988. R.K. Murray. D.K. Granner, P.A. Mayes. Printice Hall International.
- 6. Introductory Microbiology. 1995, by Trevor Gross.
- 7. Molecular Biology by G. Padmanabhan, K. SivaramSastry, C. Subramanyam, 1995, Mac Millan.
- 8. Biochemistry of Nucleic Acids.1992.11thed.R.L.P.Adams.J.T.Knowler.D.PLeader.Chapman and Hall.
- 9. Genetic Engineering –SandhyaMitra.
- 10. Molecular Biology and Biotechnology by Meyers, RA, A comprehensive Desk reference (VCH Publishers).

Course Title		ERICA OBABI STAT	LITY	AN	· ·	B. Tech. III Sem (Common to CE & ME Branches)			
Course Code	Category	Hou	rs/Wee	k	Credits	Μ	aximum M	larks	
1821302	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0		3	30	70	100	
Mid Exam Du	Mid Exam Duration: 2Hrs					End Exam Duration: 3Hrs			

Course Objectives:

The objective of this course is to familiarize the students with numerical methods of solving the nonlinear equations, interpolation. Also to impart knowledge in basic concepts and few techniques in probability and statistics in relation to the engineering applications.

Course	Course Outcomes: On successful completion of this course, the students will be able to								
CO 1	CO 1 Determine the roots of polynomial and transcendental equations by different methods. (L3)								
CO 2	2 Apply discrete and continuous probability distributions.(L3)								
CO 3	Demonstrate the components of a classical hypothesis test. (L3)								
CO 4	Infer the statistical inferential methods based on small and large sampling tests. (L4)								

<u>UNIT I</u>

Solution of algebraic and transcendental equations: Bisection method – False - position method – Newton - Raphson method. **Solution of System of equations:** Jacobi's iteration method – Gauss- Seidel iteration method.

Learning Outcomes:

After completion of this unit student able to

- find approximate roots of an equation by using different numerical methods
- find solution of system of equations by using different numerical methods

<u>UNIT II</u>

Interpolation: Finite differences - Forward differences - Backward differences - Newton's forward and backward difference formulae for interpolation - Lagrange's formula for unequal intervals- Inverse interpolation.

Learning Outcomes:

After completion of this unit student able to

- explain various discrete operators and find the relation among operators
- apply Newton's forward and backward formulas for equal intervals
- apply Lagrange's formula to find inverse interpolation

<u>UNIT III</u>

Probability: Explaining basic concepts of Random variables (Without Problems) - Probability distributions: Binomial - Poisson approximation to the binomial distribution and normal distribution-their properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- apply Binomial and Poisson distributions for real data to compute probabilities, theoretical frequencies
- interpret the properties of normal distribution and its applications.

<u>Unit IV</u>

Testing of Hypothesis: Formulation of null hypothesis, critical regions, level of significance. Large sample tests. Tests based on normal distribution -z -test for means and proportions.

Learning Outcomes:

At the end of this unit, the student will be able to

- explain the concept of estimation, interval estimation and confidence intervals
- apply the concept of hypothesis testing for large samples

<u>UNIT V</u>

Small Sample Tests: t-test for one sample, two samples problem and paired t-test. F-test - Chi-square test (testing of goodness of fit and independence).

Learning Outcomes:

At the end of this unit, the student will be able to

- apply the concept of testing hypothesis for small samples to draw the inferences
- estimate the goodness of fit

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 2/e, Reprint 2012.

References:

- 1. Veerarajan T., Engineering Mathematics, Tata McGraw-Hill, New Delhi, 2008.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			2							1
CO2	1	2			2	2						
CO3	2	2			2							1
C04		2				2						1

Course Ti	tle	Engineering 1	Mechan	ics			B. Tech. ME	III Sem				
Course Co	de	Category	Ho	ours/We	eek	Credits	Max	ximum M	arks			
1801303	6	PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3	0	0	3	30	70	100			
Mid Exam	Dura	ation: 2Hrs			End Exam	Duration	n: 3Hrs					
	 The student should understand the some fundamental aspects of Engineering Mechanics. 											
and	rigid l	bodies.			C	C	hanics like statio	•	•			
	•			•	of surfac	es and volu	imes, Dynamic e	equilibriun	n of particles,			
Dyn	amic	equilibrium of r	igid bodi	es.								
Course Ou	tcom	es: On success	ful com	pletion	of this c	ourse, the	students will b	e able to				
CO 1 D	etern	nine the resulta	int of sy	stem of	Forces							
CO 2 Id	lentif	y equilibrium	condition	ns for st	atic prol	blems						
CO 3 D	etern	nine the centro	oid of co	mposite	e figures	,centre of	gravity of bod	ies ,area,	moment of			
in	inertia and mass moment of inertia											
CO 4 A	Analyze trusses for forces in members											

UNIT I

BASIC CONCEPTS: System of Forces– Moment of Forces and its Application– Couples and Resultant of Force System- Equilibrium of system of forces- Free body diagrams –Types of Supports –Support reactions for beams with different types of loading – concentrated, uniformly distributed and uniformly varying loading.

UNIT II

ANALYSIS OF PERFECT FRAMES: Types of frames – cantilever frames and simply supported frames – Analysis of frames using method of joints.

FRICTION: Introduction, Definitions, Types of friction– laws of Solid or Coulomb Friction, Angle of Repose, Equilibrium of a Body lying on a Rough Inclined Plane, Analysis of Ladder Friction.

UNIT III

CENTROID AND CENTER OF GRAVITY: Centroids of simple figures – Centroids of Composite figures – Centre of Gravity of bodies

UNIT IV

AREA MOMENT OF INERTIA - Parallel axis and perpendicular axis theorems - Moments of Inertia of Composite Figures

MASS MOMENT OF INERTIA: Moment of Inertia of Simple solids, Moment of Inertia of composite masses.(Simple problems only)

UNIT V

Kinematics: Introduction, Velocity, Acceleration, Equations of Motion in a Straight Line under uniform Acceleration, Rectilinear Motion Under Variable Accelerations.

TEXT BOOKS:

- 1. Dr. R. K. Bansal , Engineering Mechanics, Laxmi Publications, 2005.
- 2. Fedrinand L.Singer , Engineering Mechanics B.S. Publishers 2nd Edition.
- 3. S.S.Bhavikatti ,Engineering Mechanics, New Age International, 2008.

REFERENCES:

1. A.Nelson, Engineering Mechanics-Statics and dynamics, , Tata McGraw-Hill Company, 2009.

- 2. Timoshenko & Gere, Mechanics of Materials by, CBS, Revised Fourth Edition
- 3. B. Bhathacharya, Engineering Mechanics Oxford University Publications, 2014.

Course T	Title	Ma	nufactu	iring Pi	ocess		B. Tech. ME	III Sem					
Course C	ode	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks				
180330)4	PC	L	Т	Р	С	Continuous Internal Assessment						
	<u>3</u> 000 <u>3</u> 00 <u>100</u>												
Mid Exan	m Duration: 2Hrs End Exam Duration: 3Hrs												
Course O	e Objectives:												
• Th	• The student should understand the some fundamental aspects and design concepts of casting												
pro	ocess.												
• To	o famil	iarize various fal	orication	techniqu	es used i	n engineeri	ng. To familiar	ize various	types of				
bul	k defo	rmation processe	es.										
• To	o famil	iarize about proc	essing of	f plastic r	naterials	•							
Course O	utcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to					
CO 1 I	Descri	be the right pat	tern for	an appli	cation a	and proper	method of mo	ulding					
CO 2 1	U nde r	stand special c	astings	and defe	cts of c	asting proc	cess to suggest	suitable					
I	Remed	lies	-										
CO 3													
CO 4 8	Select appropriate metal forming techniques to be used for an application.												

UNIT-I

Casting Process: Casting definition, pattern materials, types of patterns, pattern allowances, color code for patterns, Molding sands, core sands, properties of moldings and its ingredients, different types of molding machines, Elements of gating systems.

UNIT-II

Special Casting Process: CO2 molding, die casting, centrifugal casting, shell molding, investment or lost wax process; Casting defects, causes and remedies. Furnaces used in foundry–cupola, pit furnace, electric arc furnaces.

UNIT-III

Fabrication Process: Fusion welding processes – Types of Gas welding – Equipments used – Flame characteristics – Filler and Flux materials - Arc welding equipments - Electrodes – Coating and specifications – Principles of Resistance welding – Spot/butt, seam welding - Gas metal arc welding – Flux cored – Submerged arc welding – Electro slag welding – TIG welding and MIG welding

UNIT-IV:

Principle and application of special welding processes - Plasma arc welding – Thermit welding – Laser, Electron beam welding – Friction welding – Diffusion welding – Flame cutting – Weld defects – Brazing and soldering process – Types of plastics, properties, applications and their processing methods.

UNIT-V:

Deformation Processes: Hot working –types and cold working of metals-types – Forging processes — Types of Forging Machine and basic operations—Rolling of metals– Types of Rolling mills—— Principles of Extrusion — Hot and Cold extrusion –Principle of rod and wire drawing . Blanking and piercing- Bending and forming- Drawing and its types- wire drawing and tube drawing- coining and embossing - Hot and cold spinning.

TEXT BOOKS: 1. P N. Rao," Manufacturing Technology", Tata McGraw-Hill Publishing Limited, 5th edition 2019.

- 2. R.K Jain, Production Technology vol .1 & vol.2, KHANNA publishers.
- 3. P.C. Sharma, "A text book of production technology", S. Chand and Company,

REFERENCE BOOKS: 1. Begman, 'Manufacturing Process", John Wilely & Sons,

- 2. K.L. Narayana, Production Technology J.K. International Publications.
- 3. Rajput R.K, 'A text book of Manufacturing Technology', Lakshmi Publications
- 4. Kalpak jain.S, Manufacturing Engineering and Technology/ 2019, Pearson Education.

Course 7	Title S	trength	of Mate	erials		B. Tech. ME	III Sem					
Course (Code Category	He	ours/We	eek	Credits	Maximum Marks						
180330	05 PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
		3	0	0	3	30	70	100				
Mid Exa	Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs											
Course O	Course Objectives:											
	• The objective of the subject is to learn the fundamentals concepts of stress, strain and											
	deformation of solids with applications to bars and beams.											
	• The students shall understand the theory of elasticity including strain/displacement and hooks											
	law relationship.											
		•	nd deform	nation th	rough the n	nathematical mo	dels of bea	ams for bending				
	and bars for				-							
		Ũ				gn & theory of r	nachines co	ourses				
			subject	will help	in the desig			541505				
Course O	utcomes: On succes	sful com	pletion	of this c	ourse, the	students will b	e able to					
	Determine the stres		L									
	Draw the Shear Ford											
	D3 Evaluate the bending & shear stress in beams ,longitudinal & hoop stresses in thin and thick cylinders											
CO 4	CO 4 Analyze Torsions in shafts and deflections in various beams											

UNIT – I

SIMPLE STRESSES & STRAINS : Elasticity and plasticity – Types of stresses & strains– Hooke's law– stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio & volumetric strain – Elastic modulli & the relationship between them – Bars of varying section – composite bars – Temperature stresses. Strain energy – Resilience – Gradual, sudden, impact and shock loadings.

UNIT – II

SHEAR FORCE AND BENDING MOMENT: Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, U.D.L., uniformly varying loads and combination of these loads – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT – III

FLEXURAL STRESSES : Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R Neutral axis –Determination bending stresses –section modulus of rectangular and circular sections (Solid and Hollow), I,T,Angle and Channel sections – Design of simple beam sections.

SHEAR STRESSES: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections.

UNIT – IV

TORSION OF CIRCULAR SHAFTS- Theory of pure torsion- Derivation of torsion equations; $T/J=q/r=N\theta/l - Assumptions made in the theory of pure torsion- torsional moment of resistance- polar section modulus.$

DEFLECTION OF BEAMS: Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, - U.D.L uniformly varying load. Mohr's theorems – Moment area method – application to simple cases including overhanging beams.

UNIT – V

THIN CYLINDERS: Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and volumetric strains –changes in diameter, and volume of thin cylinders – Riveted boiler shells – Thin spherical shells.

Thick cylinders lame's equation - cylinders subjected to inside & outside pressures -compound cylinders.

TEXT BOOKS :

- 1. R.K.Bansal ,Strength of materials ,lakshmi publishers,6th edition 2018
- 2. S.S.Bhavikatti ,Strength of materials ,lakshmi publications,3rd edition
- 3. S.S.Rattan ,Strength of materials ,Mc Grawhill companies 3rd edition 2017

REFERENCES :

- 1. Ramamrutham ,Strength of materials ,Dhanpat rai publications
- 2. R.K.Rajaput ,Strength of materials ,S.chand &company,6th edition.
- 3. Dr.Sadhu singh ,Strength of materials ,khanna publishers

Course Titl	e Materia	al scienc	e and E	ngineer	ring	B. Tech. ME	III Sem				
Course Cod	e Category	Ho	ours/We	eek	Credits	Max	imum M	arks			
1803306	PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
		3	0	0	3	30	70	100			
Mid Exam I	Duration: 2Hrs					End Exam	Duration	n: 3Hrs			
Course Objectives:											
mater • To far carbi • Testir mater	niliarize of various le diagram g and applications als for various engi	Heat trea of meta neering a	tment pr ls and n pplicatio	ocess & ion-meta ons.	segregation	of Steels & Cas	st irons thro	ough Iron-Iron			
	comes: On succes										
CO 1 Des	scribe the relation	h betwee	n structi	ure , pro	perties of 1	metals and non	metallic	materials			
CO 2 Ex	plain the mechani	sm of cr	ystalliza	tion of 1	metals						
CO 3 Det	CO 3 Determine the grain size by using various methods for different Alloys										
dia	gram for heat treat	ment pro	ocess								
UNIT I											

CRYSTAL STRUCTURE OF METALS: Introduction to engineering materials and its properties and classifications, Mechanism of crystallization of metals, Recovery Recrystallization and grain growth, grain and grain boundaries, effect of grain boundaries on the properties of metal / alloys – determination of grain size.

CONSTITUTION OF ALLOYS: introduction, Necessity of alloying, types of solid solutions, Hume Ruther's rules, intermediate alloy phases, and electron compounds.

UNIT II

EQUILIBRIUM DIAGRAMS:Construction of equilibrium diagrams, phase rule, Lever rule, Interpretations of phase diagrams, types of phase diagrams, Isomorphous alloy systems, eutectic, peritectic, eutectoid, and peritectoid systems and reactions.

Transformations in the solid state – allotropy, Study of important binary phase diagrams of iron-iron carbon (Fe-Fe₃C) equilibrium diagram, Effect on Alloying elements on (Fe-Fe₃C) system on steels. Relationship between equilibrium diagrams and properties of alloys of Cu-Ni and Al-Cu.

<u>UNIT III</u>

CAST IRON AND STEEL: Introduction to cast iron and steel, classification of cast irons, Structure and properties of White Cast iron, Malleable Cast iron, greycast iron, Spheriodal graphite cast iron, Alloy cast irons.

Classification of steel, structure and properties of plain carbon steel, Low alloy steel, Hadfield manganese steel, tool and die steels.

<u>UNIT IV</u>

HEAT TREATMENT OF ALLOYS: Importanes of Heat treatment of alloys, Heat treatment cycles, Introduction to TTT diagrams, Heat treatment processes: Annealing, normalizing, tempering, Hardening, Hardenability, surface – hardening methods, Age hardening treatment.

POWDER METALLURGY: Production of metal powder condition compaction, sintering and secondary operations, advantages, limitations and applications of powder metallurgy.

<u>UNIT V</u>

NON-FERROUS METALS AND ITS ALLOYS: Structure and properties of copper and its alloys, Aluminum and its alloys, Titanium and its alloys and applications.

Text Books:

- 1. Donald R.Askel ,Essential of Materials Science and Engineering, , USA, 3rd Edition, Cengage Publisher, 2013.
- 2. V. Raghavan , Material science, PHI, 5th edition

3. Sidney H. Avner ,Introduction to Physical Metallurgy, US, 2nd Edition, Tata McGraw-Hill, Noida,2007

Reference Books:

- 1. R.K.Rajput, Engineering materials and Metallurgy, S chand publishers, 2nd edition , 2016
- 2. William D. Callister , Materials Science and Engineering, , 8th Edition, 2010
- 3. Agarwal ,Science of Engineering Materials, TMH.

Course Tit	le	Thermo	odynam	ics	B. Tech. ME III Sem							
Course Co	le Category	Ho	ours/We	eek	Credits	May	kimum M	arks				
1803307	PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
		3	0	0	3	30	70	100				
Mid Exam	d Exam Duration: 2Hrs End Exam Duration: 3Hrs											
Course Objectives:												
• To fa												
• To st												
	udy the effect of e	-			U		form of ch	arts and				
diag	•	0,		1 1								
Ũ	miliarize applicati	on of the	e concep	ots of the	ermodynan	nics in vapour	power, ga	s power				
cycle	es and lays the four	ndation f	or subse	equent co	ourses in F	luid Mechanic	s, Heat Tr	ansfer,				
Ener	gy Systems & Tecl	hnologie	s and ot	her ther	mal engine	ering Courses	such as T	urbo				
macl	inery, Refrigeratio	on and A	ir Condi	itioning,	Power Pla	ant Engineering	g etc.					
Course Out	comes: On success	sful com	pletion	of this c	ourse, the	students will b	e able to					
CO1 U	nderstand the con-	cept of s	ystem, (Control	volume, th	ermodynamic	properties					
	ermodynamic Equ	-	•			•						
	Apply the Laws of Thermodynamics to thermodynamic system											
-	Use Steam tables to define properties of steam											
	Estimate the performance of Gas Power cycles applied to prime movers											

<u>UNIT I</u>

Basic Concepts & Definitions:

Thermodynamics and its importance, Macroscopic and Microscopic view point, Concept of Continuum, Thermodynamic System and its types, Surrounding and Boundary, Control Volume approach and Systems approach, Equilibrium – Thermal, Chemical, Mechanical and Thermodynamic, Pure substance, State, Path, Process and Cycle, Property – Intensive and Extensive, Point Function and Path function, Quasi-Static Process, Reversible and irreversible Processes, Temperature and different scales,Zeroth Law of Thermodynamics.

Heat and Work Transfer:

Work Transfer, Displacement Work, PdV Work in various Quasi-Static Processes, Some Typical Work Forms other than PdV Work, Free Expansion Work, Net Work Done by the System, Heat Transfer, Adiabatic Process, Specific Heat, Latent Heat, Salient Features of Heat and Work Transfer.

<u>UNIT II</u>

First Law of Thermodynamics for a Closed System undergoing a Process, First Law of Thermodynamics for a Cyclic process, Internal Energy – a Property of the System, Enthalpy- a Property of the System, Applications of First Law of Thermodynamics to Non Flow processes, First law of Thermodynamics applied to an Open System like Steam Nozzle, Boiler, Steam Turbine, Pump, Heat Exchanger, Throttling Process, Perpetual Motion Machine of First Kind.

<u>UNIT III</u>

Second Law Of Thermodynamics:

Limitations of First Law of Thermodynamics, Thermal Reservoir – Source and Sink, Concept of Heat Engine, Heat Pump and Refrigerator, Second Law of Thermodynamics - Kelvin Planck and Clausius Statements, Equivalence of Kelvin Planck and Clausius Statements, Reversible and Irreversible Process, Causes of **Irreversibility**, PMM-II, Carnot theorem and its Corollaries, Thermodynamic Temperature Scale.

Entropy:

Clausius Inequality, Clausius Theorem, Concept of Entropy, Entropy – a Property of a System, Isentropic Process, Temperature Entropy plot and its relationship with heat interactions, Principle of increase in Entropy, Change of entropy of typical Processes.

Third Law of Thermodynamics, Absolute entropy

<u>UNIT IV</u>

Properties of Gases and Gas Mixtures:

Ideal Gas, Relation among the specific heats, internal energy, Enthalpy, Analysis of Isochoric, Isobaric, Isothermal, Isentropic, isenthalpic processes, Representation of the above processes on P-V, T-s Planes, Determination of Work, Heat, Entropy and Enthalpy changes during the above processes **Gas Power Cycles:**

Assumptions of Air Standard Cycle, Otto Cycle, Diesel Cycle and Dual Cycle, Comparison of Otto, Diesel and Dual Combustion Cycle, Brayton cycle and Atkinson Cycle

UNIT V

Properties of Pure Substance:

Pure substance, Phase Change Processes of pure substance, Property diagrams for Phase Change Process(T-V, T-S and P-H diagrams), Triple and Critical Points, Properties of Steam, Quality of Steam, Its determination Using Throttling and Separating-Throttling Calorimeters, Steam Processes, Expressions for the change in internal energy, enthalpy, work, heat, entropy in various processes, Mollier Chart

Steam Power Cycle:

Rankine Cycle analysis, Concept of Mean Temperature of Heat Addition, Methods to improve the cycle performance- Regeneration- Reheating

Text Books:

- 1. P.K. Nag, Engineering Thermodynamics, Sixth Edition 2017, TMH, New Delhi
- 2. Claus Borgnakke & Richard E Sonntag, Fundamentals of Thermodynamics, Seventh Edition, Willey Eastern, New Delhi
- 3. Yunus A. Cengel & Michale A Boles, Thermodynamics: An Engineering Approach, Eighth Edition, McGraw Hill

Reference Books:

- 1. P. Chattopadhyay, Engineering Thermodynamics,2nd edition, 2016,Oxford University Press India
- 2. Y.V.C. Rao, Engineering Thermodynamics through Examples, Revised Edition, Universities Press (India) Pvt. Ltd.
- 3. J.P Holman, Thermodynamics, McGraw Hill & Co

Course	Title	APPL	IED TH	ERMO	DYNA	MICS	B. Tech. ME	IV Sem				
Course	Code	Category	Hours/Week Credits Maximum Marks									
1803	401	PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3	-	0	3	30	70	100			
Mid Ex	id Exam Duration: 2Hrs End Exam Duration: 3Hrs											
Course CO 1	To deve conversion Outcon Unders Stea	ozzles, Steam o elop the student on systems in the nes: On success stand the conce m condensers of	t's abilit he cours aful com pt and wetc	y to use e of thei pletion vorking	the pro ir opera of this c of I.C E	perty table tion course, the Engines, Ste	students will b eam Turbines a	e able to				
CO 2	conder			-								
CO 3	Steam Nozzles etc											
UNIT -	CO 4 Evaluate the performance of IC Engines, Air Compressors, Steam Nozzles and Steam turbines etc. INIT I											

UNIT – I

I.C. ENGINES: Definition of Heat Engine, I.C Engine Classification – Parts of I.C.Engines, Working of I.C. Engines, Two Stroke & Four Stroke I.C.Engines SI & CI Engines,

Valve and Port Timing Diagrams, Cooling & Lubrication Systems, Ignition

System-Battery Ignition System, Magneto Ignition system, Brake Power, Frictional Power, Indicated Power and Related efficiencies.

UNIT – II

Air Compressors : Reciprocating Compressors- Effect of Clearance volume in Compressors, Volumetric Efficiency, Single Stage and Multi Stage Compressors, Effect of Inter cooling and Pressure Drop in Multi - Stage Compressors. Rotary Compressors- Working principles of Roots blower, Vane type Blower, Centrifugal Compressor - Axial Flow compressors (Problems Related to Reciprocating Compressors only) **Boilers:** Classification based on Working principles & Pressures of operation –Low Pressure & High Pressure .Boilers – Mountings and Accessories – Boiler horse power, equivalent evaporation, efficiency and heat balance.

UNIT – IV

Steam Nozzles: Function of nozzle – applications - types, Flow through nozzles, thermodynamic analysis – assumptions -velocity of nozzle at exit-Ideal and actual expansion in nozzle, velocity coefficient, condition for maximum discharge, critical pressure ratio. Super saturated flow, its effects

Steam Condensers: Requirements of steam condensing plant, rare fraction – Classification of condensers – working principle of different types – vacuum efficiency and condenser efficiency – air leakage, sources and its effects.

UNIT – V

Steam Turbines

Impulse turbine; Mechanical details – Velocity diagram – effect of friction – power developed, axial thrust, blade or diagram efficiency – condition for maximum efficiency, De-Laval Turbine - its features. -Velocity compounding and pressure compounding, governing of turbine

Reaction Turbine: Mechanical details – principle of operation, degree of reaction –velocity diagram – Parson's reaction turbine – condition for maximum efficiency, governing of turbines.

TEXT BOOKS:

1. V. Ganesan, Internal Combustion Engines - TMH, 4th Edition

- 2. P.K. Nag, Basic and Applied Thermodynamics, TMH
- 3. R.Yadav, Thermodynamics and Heat Engines, Central Book Depot

REFERENCES:

- 1. M.L.Mathur & Mehta, Jain bros, Thermal Engineering-
- 2. Mathur& Sharma ,IC Engines DhanpathRai& Sons, 2010
- 3. Heywood, I.C. Engines fundamentals, McGrawHill, ,2011

Course T	Title	FL	UID M	ECHAN		B. Tech. ME IVSem						
Course C	ode	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks			
1803	402	PC	PC L T P C Continuous Internal Assessment End									
			3	-	0	3	30	70	100			
Mid Exar	am Duration: 2Hrs End Exam Duration: 3Hrs											
• To flo	ndition develo ating b	undamental kn as of internal ar op understandi oody and applic cate the importa	nd externing about cation of	hal flows t hydros mass, r	s. tatic law nomentu	, principle am and ene	e of buoyancy a ergy equation i	and stabili n fluid flo	ity of a ow.			
Course O	utcom	es: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to				
CO 1	Employ	y the basic kno	wledge	of fluid	properti	es.						
	•	e Hydraulic m eristics of vari		•	loping n	nathematic	al models to st	tudy				
CO 3 1	understand the mathematical techniques of practical flow problems.											
CO 4	O 4 Understand the boundary layer theory and forces on submerged bodies											
UNIT I												

FLUID STATICS: Dimensions and units, physical properties of fluids –mass density, specific weight, specific gravity, viscosity, surface tension, vapor pressure, compressibility, elasticity and their influence on fluid motion – atmospheric, gauge and vacuum pressure, measurement of pressure – piezometer, U-tube and differential manometers

UNIT II

FLUID KINEMATICS: Introduction – velocity and acceleration - Stream line, path line and streak line - stream tube - classification of flows – equation of continuity for one dimensional flow and three dimensional flow – circulation and vorticity – velocity potential and stream function –flow net.

FLUID DYNAMICS: Surface and body forces – Euler's and Bernoulli's equations for flow along a stream line, momentum equation and its application on force on pipe bend.

UNIT III

PIPE FLOW: Reynold's experiment – types of flow - Darcy Weisbach equation – Hagen Poiseuille equation Minor losses in pipes – pipes in series and pipes in parallel – total energy line hydraulic gradient line

MEASUREMENT OF FLOW: Velocity measurement - Pitot tube, venturi meter, and orifice meter, Flow nozzle, Turbine flow meter

UNIT IV

Boundary Layer Theory: Boundary gap layer – definition – growth over a flat plate – boundary layer thickness – nominal, displacement, momentum and energy thickness – laminar sub layer – Momentum integral equation of boundary layer - separation of boundary layer- methods of controlling the boundary layer

UNIT V

FORCES ON SUBMERGED BODIES: Introduction – types of drag – drag on a sphere – drag on a cylinder – drag on flat plate – drag on airfoil – effect of compressibility on drag – development of lift on circular cylinder – Magnus effect – lift on an airfoil.

Text Books:

1. Modi and Seth, Hydraulics, fluid mechanics including hydraulic machines, Standard Publishers

2.D. S. Kumar, Fluid Mechanics and Fluid Power Engineering, Kotaria& Sons, 7th Edition, 2012

3. R.K. Bansal ,Fluid Mechanics and hydraulic Machines , Laxmi Publications,2018 **Reference Books:**

- 1. R.K. Rajput, Fluid Mechanics and Hydraulic Machines, S.Chand,6th Edition,2013
- 2. D. Rama Durgaiah, Fluid Mechanics and Machinery ,New Age International, 1st Edition
- 3. Banga& Sharma, Hydraulic Machines, Khanna Publishers, 7th Edition, 2007

Course	Title	KINEMAT	ICS O	F MA	B. Tech. ME IV Sem								
Course	Code	Category	Ho	ours/We	Maxin	num Mar	ks						
18034	403	РС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			3	-	0	3	30	70	100				
Mid Exa	a <mark>m D</mark> ur	m Duration: 2Hrs End Exam Duration: 3Hrs											
Course	To perf To drav To kno Outcon	erstand the term orm kinematic v the cam profil w kinematics of nes: On success	analysis e to stuc gears. ful com	on vario ly about pletion o	ous mec types o of this c	hanisms. f cams and ourse, the	l cam terminol						
CO 1	Desig	n a suitable mec	hanism	dependi	ng on a	pplication							
CO 2	unders	stand the working	ng princi	ples of	commoi	n mechanis	sms						
CO 3	Analyze mechanism for finding its displacement, velocity, acceleration,												
CO 4	understand different types of motions and various configurations of followers, by drawing												

UNIT – I

MECHANISMS AND MACHINES:

Elements or Links – Classification – Rigid Link, flexible and fluid link. Types of kinematic pairs -sliding, turning, rolling, screw and spherical pairs, lower and higher pairs, closed and open pairs .Constrained motion – completely, partially or successfully constrained and incompletely constrained. Mechanisms and machines: classification of mechanisms and machines, kinematic chain, inversion of Mechanisms: inversions of quadric cycle chain, single and double slider crank chain. Mobility of mechanisms

UNIT II

STRAIGHT LINE MOTION MECHANISMS:

Exact and approximate, copiers and generated types –Peaucellier, Hart and Scott Russel – Grasshopper, Watt, Tchebicheff and Robert Mechanisms. Pantograph

STEERING MECHANISMS: Conditions for correct steering – Davis Steering gear, Ackermanns steering gear.

UNIT III

KINEMATICS:

Velocity and Acceleration Diagrams- Velocity and acceleration – Motion of link in machine – Determination of Velocity and acceleration – Graphical method – Application of relative velocity method – Slider crank mechanism, four bar mechanism. Acceleration diagrams for simple mechanisms, Coriolis acceleration, and determination of Coriolis component of acceleration. Kleins construction. Analysis of slider crank mechanism for displacement, velocity and acceleration of slider using analytical method **INSTANTANEOUS CENTRE METHOD:** Instantaneous centre of rotation, three centres in-line theorem – locating instantaneous centres for simple mechanisms and determination of angular velocity of points and links.

UNIT IV CAMS:

Definitions of cam and follower – uses – Types of followers and cams – Terminology. Types of follower motion - Uniform velocity – Simple harmonic motion and uniform acceleration. Maximum velocity and maximum acceleration during outward and return strokes and Drawing of cam profiles .

UNIT V GEARS:

Higher pairs, friction wheels and toothed gears types, law of gearing, condition for constant velocity ratio for transmission of motion, Forms of tooth: cycloidal and involute profiles, Velocity of sliding, phenomena of interference.

GEAR TRAINS: Introduction – Types – Simple – compound and reverted gear trains – Epicyclic gear train. Methods of finding train value or velocity ratio of Epicyclic gear trains. Selection of gear box - Differential gear for an automobile

TEXT BOOKS:

- 1. S.S. Rattan, Theory of Machines, Tata McGraw Hill Publishers, 4th Edition, 2015.
- 2. Thomas Bevan, Theory of Machines, Pearson (P) 3rd Edition, 2012
- 3. J.J Uicker, G.R.Pennock & J.E. Shigley, Theory of machines and Mechanisms Oxford publishers.4th Edition, 2015

REFERENCE BOOKS:

- 1. R.L Norton, Kinematics and dynamics of machinery, Tata McGraw Hill Publishers, 2012
- 2. Sadhu Singh ,Theory of Machines by Pearson (P).
- 3. A.Ghosh & A.K.Malik ,Theory of Mechanisms and machines East West Press Pvt. Ltd.

Course	Title	Basics o	f Electr	onics E	B. Tech. ME IV Sem				
Course	Code	Category	He	ours/We	eek	Credits	Maximum Marks		
1814404		PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	1	0	3	30	70	100
		ation: 2Hrs					End Exam	Duration	n: 3Hrs
Course	Objecti	ves:							
	• ′	To learn the wo	orking of	f various	biode	s and its cir	rcuits.		
	• '	To teach Transi	stors an	d its apr	olication	18.			
		To know the wo							
~									
Course	Outcon	nes: On success	ful com	pletion	of this c	course, the	students will b	e able to	
CO 1	CO1: U	Understand the	function	nalities o	of the di	odes.			
CO 2	CO2: /	Analyze the per	forman	ce of rec	tifiers.				
CO 3	CO3: 1	Use the transist	ors in va	arious ap	plication	ons.			
CO 4	CO4: 1	Understand the	working	g of volt	meters	and CROs.			

UNIT-I

DIODE AND ITS CHARACTERISTICS: PN Junction diode, Symbol, V-I characteristics, Diode Applications, Rectifiers-Half Wave, Full Wave and Bridge Rectifiers, Zener diode, photo diode, LED.

UNIT-II

BJT: Bipolar Junction Transistor (BJT) – Types of Transistors, Operation of NPN and PNP Transistors, Input- Output Characteristics of BJT- CB, CE and CC Configurations, Relation between I_C , I_B and I_E . Transistor Biasing- Fixed Bias, Voltage Divider Bias, Transistor Applications-Transistor as an Amplifier, Transistor as a Switch, Single Stage CE Amplifier, Frequency Response of CE Amplifier.

UNIT-III

Junction Field Effect Transistor: Theory and Operation of JFET, Output Characteristics, Transfer Characteristics, Configurations of JFET- CD, CS and CG Configurations, JFET Applications- JFET as an Amplifier, JFET as a Switch, Comparison of BJT and JFET.

UNIT-IV

Oscillators: Concepts of Feedback Amplifier, Necessary conditions for Oscillators, RC phase shift Oscillator, Colpitts Oscillator, Hartley Oscillator and Crystal Oscillator.

UNIT-V

ELECTRONIC INSTRUMENTATION: Electronic Multi meter and Digital Voltmeter, Integrating Volt meter, Successive approximation DVM, Principles of CRT (Cathode Ray Tube), Deflection Sensitivity, Electrostatic and Magnetic Deflection, Applications of CRO -Voltage, Current and Frequency Measurements

TEXT BOOKS:

1. R.L.Boylestad and Louis Nashelsky, "Electronic devices and circuits", 9th Edition, 2006, PHI.

2. S.Salivahanan – "Electronic Devices and Circuits" – TMH

3. Modern Electronic Instrumentation and Measurement Techniques – A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.

REFERENCE BOOKS:

- Millman"s Electronic Devices and Circuits-J.Millman and C.C.Halkias, Satyabratajit, 2nd Edition, 1998, TMH.
- Electronic Devices and Circuits-K.Lal Kishore, 2nd Edition, 2005, BSP. 3 .G.K.Mittal, "Industrial Electronics".

Course	Title		STRUMENTATION AND NTROL SYSTEMS			B. Tech. ME IV Sem			
Course	Code	Category	He	ours/We	ek	Credits	Maximum Marks		
1803405		PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	-	0	3	30	70	100
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs
• To	 To enable the students to understand the fundamentals of instrumentation and control available for monitoring/measuring in domestic / industrial applications. To learn fundamentals of various types of Transducers. To acquire basic understanding of principle & working of Transducers Course Outcomes: On successful completion of this course, the students will be able to 								
CO 1	select	appropriate de	vice for	the mea	suremen	nt of param	eters like temp	berature, p	ressure,
CO 2		stress, humidit ze the fundame						haracteris	tics and
CO 3	Imple	Analyze the fundamentals of various types of Transducers. Implement various principles & working of Transducers							
CO 4	unders	tand the metho	ds to ana	alyze the	e stabili	ty of syster	ns from transfe	er function	n forms.

UNIT-I

INTRODUCTION

Definition - Basic principles of measurement - Measurement systems, generalized configuration and functional descriptions of measuring instruments - examples. Dynamic performance characteristics sources of error, Classification and elimination of error.

UNIT-II

MEASUREMENT OF DISPLACEMENT:

Theory and construction of various transducers to measure displacement - Piezo electric, Inductive, capacitance, resistance, calibration procedures

MEASUREMENT OF TEMPERATURE: Classification - Ranges - Various Principles of measurement - Expansion, Electrical Resistance - Thermistor - Thermocouple - Pyrometers -Temperature Indicators.

MEASUREMENT OF PRESSURE: Units - classification - different principles usedManometers, Piston, Bourdon pressure gauges, Bellows - Diaphragm gauges. Low pressure measurement - Mcleod pressure gauge

UNIT -III MEASUREMENT OF LEVEL: Direct method - Indirect methods - capacitative, ultrasonic, magnetic, cryogenic fuel level indicators - Bubler level indicators. FLOW MEASUREMENT:

Rotameter, magnetic, Ultrasonic, Turbine flow meter, Hot - wire anemometer Laser Doppler Anemometer (LDA).

MEASUREMENT OF SPEED: Mechanical Tachometers - Electrical tachometers - Stroboscope, Noncontact type of tachometer. Measurement of Acceleration and Vibration: Different simple instruments - Principles of Seismic instruments - Vibrometer and accelerometer.

UNIT -IV

MEASUREMENT OF STRESS & STRAIN: Various types - electrical strain gauge – gauge factor - method of usage of resistance strain gauge for bending, compressive and tensile strains - usage for measuring torque.

UNIT - V

MEASUREMENT OF HUMIDITY - Moisture content in the gases, sling psychrometer, Absorption psychrometer, Dew point meter

MEASUREMENT OF FORCE, TORQUE AND POWER- Elastic force meters, load cells, Torsion meters, Dynamometers.

ELEMENTS OF CONTROL SYSTEMS: Introduction, Importance - Classification – Open and closed systems

TEXT BOOKS:

- 1. D.S Kumar, Mechanical measurement and control Systems,5th revised enlarged edition,2012
- 2. Doeblin O. etaI., Measurement systems: Application and design, , TMH 6^{th} edition.
- 3. Beckwith, Marangoni, Linehard , Mechanical Measurements , PHI, PE

REFERENCES:

- 1. B.C.Nakra & K.KChoudhary, Instrumentation, Measurement & Analysis, TMH,2nd edition2004
- 2. R.K. Jain ,Mechanical and Industrial Measurements , Khanna Publishers.
- 3. AK. Tayal , Instrumentation & Mechanical Measurements, Galgotia Publ.

Course 7	ſitle	Compu	ıter Aid	ed Mac	B. Tech. ME IV Sem				
Course (Code	Category	egory Hours/Week Credits				Maxin	ks	
180340	06	РС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			1	2	0	2	50	50	100
Mid Exa	m Dura	tion: 2Hrs					End Exam	n Duratio	n: 3Hrs
Course O) bjectiv	ves:							
• Introd	luce cor	ventional repr	resentati	ons of n	naterial	and maching	ne components	5.	
• Train	to use	software for 2	D and 3	D mode	ling.				
• Famil	iarize w	ith thread pro	files, riv	eted, we	elded ar	nd key joint	ts.		
• Teach	solid n	nodeling of ma	achine p	arts and	their se	ections.			
Course O	Outcom	es: On success	ful com	pletion	of this o	course, the	students will b	e able to	
CO 1	Dem	onstrate the co	onventio	nal repr	esentati	ons of mat	erials and mac	hine comp	oonents.
CO 2	Crea	te solid model	s and se	ctional	views o	f machine o	components.		
CO 3	Desi	gn 3D assemb	lies into	2D drav	wings.				
CO 4	Creat	e manufacturii	ng drawi	ng with	dimens	sional and g	geometric toler	ances	

The following contents are to be done by any 2D software package

Conventional representation of materials and components:

UNIT-1

Detachable joints: Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint, bolted joint with washer and locknut, stud joint, screw joint.

UNIT-2

Riveted joints: Drawing of rivet, lap joint, butt joint with single strap, single riveted , double riveted double strap joints.

UNIT-3

Welded joints: Lap joint and T joint with fillet, butt joint with conventions.

Keys: Taper key, sunk taper key, round key, saddle key, feather key, woodruff key.

Shaft coupling, bushed pin-type flange coupling, universal coupling, Oldhams' coupling.

The following contents to be done by any 3D software package

UNIT-4

Sectional views

Creating solid models of complex machine parts and create sectional views.

UNIT-5

Assembly drawings: (Any four of the following using solid model software)

Lathe tool post, tool head of shaping machine, tail stock, machine vice, gate valve, carburettor, piston,

connecting rod, eccentric, screw jack, plumber block, axle bearing, pipe vice, clamping device, Geneva

cam, universal coupling,

production drawing:

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly

drawings and prepare production drawing with dimensional and geometric tolerances.

Text Books:

- 1. K.L.Narayana, P.Kannaiah ,Machine Drawing ,New age international Publications, sixth Edition 2019
- 2. Dr.R.K Dahwan , A Text Book of Machine Drawing ,s.chand Publications, 2018
- 3. N.D.Bhatt ,Machine Drawing , charotar publications 2018

Reference Books:

- 1. Cecil Jensen, Jay Helsel and Donald D.Voisinet, Computer Aided Engineering Drawing, Tata Mcgraw-Hill, NY, 2016
- 2. James Barclay, Brain Griffiths, Engineering Drawing for Manufacture, Kogan Page Science, 2016.
- 3. B.Bhattacharya, Machine Drawing, oxford publications 2017.

Course	Title	BASIC ELECTRONICS AND FLUID MECHANICS LAB							IV Sem	
Course	Code	Category	Hours/Week			Credits	Maxin	num Mar	ks	
1803407		PC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			-	-	3	2	50	50	100	
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs	
• The S	Student g						mplifiers vanes, calibration	on of ventu	ırimeter	
The S and cThe s	Student g prificement tudent is	ain knowledge eter able to determi	in the exp ne frictio	periments	s on impa	act of jet on narge coeffi	vanes, calibration		urimeter	
 The S and c The s 	Student g prificeme tudent is Outcon	ain knowledge eter able to determi nes: On succes	in the exp ne frictio sful com	periments on factor a pletion of	s on impa and discl of this c	act of jet on narge coeffi ourse, the	vanes, calibration cient. students will be		urimeter	
The S and cThe s	Student g prificeme tudent is Outcon	ain knowledge eter able to determi	in the exp ne frictio sful com	periments on factor a pletion of	s on impa and discl of this c	act of jet on narge coeffi ourse, the	vanes, calibration cient. students will be		urimeter	
 The S and c The s 	Student g prificement tudent is Dutcom CO1: U	ain knowledge eter able to determi nes: On succes	in the exp ne frictio sful com lge of co	n factor a pletion o	on impa and discl of this c g CRO, d	act of jet on narge coeffi ourse, the liodes and	vanes, calibration cient. students will bo rectifiers.		urimeter	
 The S and c The s Course C CO 1	Student g prificement tudent is Dutcom CO1: U CO2: F	ain knowledge eter able to determi nes: On succes Jtilize knowled	in the exp ne frictio sful com Ige of co ments o	n factor a pletion o mputing n comm	on impa and discl of this c g CRO, d on emit	act of jet on narge coeffi ourse, the liodes and ter and an	vanes, calibration cient. students will bo rectifiers. nplifier		urimeter	

LIST OF EXPERIMENTS

PART-A

BASIC ELECTRONICS LAB

- 1. Study of CRO (Measurement of voltage, frequency and phase of periodic signals)
- 2. V-I Characteristics of PN junction Diode.
- 3. Half Wave Rectifier with and without capacitive filter.
- 4. Full Wave Rectifier with and without capacitive filter
- 5. Input and output characteristics of Common Emitter (CE) configuration.
- 6. Frequency response of a single stage CE amplifier.

PART-B FLUID MECHANICS LAB

- 1. Calibration of Venturimeter
- 2. Calibration of Orifice meter.
- 3. Determination of friction factor for a given pipe line.
- 4. Calibration of mouthpiece/Orifice
- 5. Impact of jets on Vanes.

L	Т	Р	С
0	0	1	1

Seminar (1803408)

Course Outcomes:

At the end of the course:

- 1. Students will learn to survey the relevant literature such as books, national/international refereed journals and contact Faculty for the selected topic of seminar.
- 2 Students will be able to use different experimental techniques.
- 3 Students will learn to write technical reports.
- 4. Students will develop skills to present and defend their Report in front of audience.

Syllabus Contents: Students can take up small topic in the field of mechanical engineering as seminar Topic.. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc. The Seminar Topic Must present in presence of Concerned Faculty and co students.

Course Title	Advanced English Communication Skills Lab				B. Tech. ME	IV Sem			
Course Code	Category	Ho	urs/W	eek	Credits	Maximum Marks			
1824409	Humanities and social	L	Т	Р	С	Internal Assessment	External Exams	Total	
	sciences			3	2	50	50	100	
						End Exa	m Duration	: 3Hrs	

Course Objectives:

- To focus on improving the student's proficiency in English at all levels.
- To train students to use language effectively to participate in group discussions,
- To help them face interviews and sharpen public speaking skills
- To enhance the confidence of the student by exposing him/her to various situations and contexts which he/she would face in his/her career.
- To make students industry-ready.

Course Outcomes: On successful completion of this course, the students will be able toCO 1Describe Speaking and listening skillsCO 2Understand various kinds of reports and present them schematicallyCO 3Analyze Behavioural skillsCO 4Illustrate various employability skills required for the employmentCO 5Classify the verbal and non-verbal communication

1. Syllabus:

The following course content is prescribed for the Advanced Communication Skills Lab:

Reading Comprehension -- Reading for facts, guessing meanings from context, speed reading, scanning, skimming for building vocabulary (synonyms and antonyms, one word substitutes, prefixes and suffixes, idioms and phrases.)

Listening Comprehension ---Listening for understanding, so as to respond relevantly and appropriately to people of different backgrounds and dialects in various personal and professional situations.

Technical Report Writing --- Types of formats and styles, subject matter, organization, clarity, coherence and style, data-collection, tools, analysis

Resume' Writing --- Structure, format and style, planning, defining the career, objective, projecting one's strengths, and skills, creative self marketing, cover letter

Group Discussion--- Communicating views and opinions, discussing, intervening. Providing solutions on any given topic across a cross-section of individuals, (keeping an eye on modulation of voice, clarity, body language, relevance, fluency and coherence) in personal and professional lives.

Interview Skills --- Concept and process, pre-interview plannig, mannerisms, body language, organizing, answering strategies, interview through tele and video-conferencing.

Technical Presentations (Oral) --- Collection of data, planning, preparation, type, style and format, use of props, attracting audience, voice modulation, clarity, body language, asking queries.

2. Minimum Requirements

The English Language Lab shall have two parts:

The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System, a TV, A digital stereo-audio and video system, Camcorder etc.

System Requirement (Hardware Component):

Computer network with LAN with a minimum of 60 multimedia systems with the following specifications:

P-IV Processor, Speed-2.8 GHz, RAM_512 MB minimum, Hard Disk-80 GB, Headphones

Prescribed Software: Walden and K-Van Solutions.

Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book wich are loaded on the systems):

- 1. Technical writing and professional communication, Huckin and Olsen Tata Mc Graw-Hil 2009.
- 2. Speaking about Science, A Manual for Creating Clear Presentations by Scott Morgan and Barrett Whitener, Cambridge University press, 2006.
- Handbook for Technical Writing by David A McMurrey & Joanne Buckely CENGAGE Learong 2008.
- 4. **Technical Communication**by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- 5. The ACE of Soft Skills by Gopal Ramesh and Mahadevan Ramesh, Pearson Education, 2010.
- 6. Cambridge English for Job-Hunting by Colm Downes, Cambridge Unicversity Press, 2008.
- 7. Resume's and Interviews by M. Ashraf Rizvi, Tata Mc Graw-Hill, 2008.

- 8. From Campus To Corporate by KK Ramachandran and KK Karthick, Macmillan Publishers India Ltd, 2010.
- English Language Communication: A Reader cum Lab Manual Dr A Ramakrishna Rao, Dr G Natanam & Prof SA Sankaranarayanan, Anuradha Publications, Chennai 2008.
- 10. Managing Soft Skills by K R Lakshminarayan and T. Muruguvel, Sci-Tech Publications, 2010.
- 11. Business Communication by John X Wang, CRC Press, Spepcial Indian Edition, 2008.

Course	Title		CONME E, ME,I		CE	B. Tech. ME IVSem					
Course	Code	Category	Category Hours/Week				Maximum Marks				
18994M1		PC	L T P			С	Continuous Internal Assessment	End Exams	Total		
			2	-	0	0	30		30		
Mid Exa	am Dur	ation: 2Hrs					End Exam	n Duratio	n: 3Hrs		
• 7 g e	To unde generation arth from Outcon Gain a	the students to erstand the imposed of the invention ons and polluti m the invention nes: On success higher level of onmental proble	portance on cause is by the sful com	e of pro es due t engined	otecting to the d ters.	natural ready to day	esources, ecos activities of h	ystems fo numan life e able to	e to save		
CO 2		stand the interc					-	em.			
CO 3		nce their society									
CO 4	on env	ses critical thin ironment						-	ctivities		
CO 5	unders	the management tanding on env	ironmen	tal conc	erns and	l follow su	stainable deve	lopmental	1		

UNIT I: Introduction to Environmental Studies- Natural Resources (10 lectures)

Multidisciplinary nature of environmental studies. Scope and Importance.

Natural resources and associated problems - Renewable and non renewable Resources

(a) Forest resources -Deforestation: Causes and impacts due to mining, dams - benefits and problems

(b) Water resources – Use and over utilization of surface and ground water – Floods, drought, and conflicts over water

(c) Energy resources –Renewable and Non Renewable energy resources, use of alternate energy resource

(d) Land resources -Soil erosion and desertification, Land degradation.

Role of an individual in conservation of natural resources.

Learning Outcomes: At the end of this unit, student will be able to

*to understand the multidisciplinary nature of the environment

*understand the importance of natural resources

*analyze the problems associated with excess usages of natural resources

*understand role of individual in protection of environment

UNIT II: ECOSYSTEMS

Ecosystem- Definition–Structure and function of an ecosystem– Energy flow in the ecosystem –Food chains, food webs, Ecological succession.

Introduction, types, characteristic features of the following ecosystem:

(a)Forest ecosystem,(b)Grassland ecosystem,(c)Desert ecosystem,(d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Learning Outcomes: At the end of this unit, student will be able to

*articulate the basic structure and functions of ecosystem

*provides knowledge on interrelationship of one organism with other organism

*get awareness on different types of ecosystems present in our surroundings and their importance.

UNIT III: BIODIVERSITY AND ITS CONSERVATION

Levels of Biodiversity: genetic, species and ecosystem diversity – Bio-geographical classification of India – Hotspots .Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – India as a mega-diversity nation – Endangered and endemic species. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Conservation of biodiversity: Insitu and Ex-situ conservation of biodiversity.

Learning Outcomes: At the end of this unit, student will be able to

* explains the concept of genetic diversity

*explain endangered and endemic species of India.

* identify the threats to biodiversity due to human involvement

*Provides knowledge on conservation of biodiversity.

UNIT IV: ENVIRONMENTAL POLLUTION

(8 lectures)

Definition, Cause, effects and control measures of (a) Air Pollution,(b)Water pollution,(c)Soil pollution (d)Noise pollution. Nuclear hazards –Risks to human health .Solid waste management: Control measures of urban and industrial wastes. Pollution case studies.Global Warming, Ozone layer depletion, acid rains and impacts on human communities and environment.Disaster management: floods, earthquakes, cyclones

(6 lectures)

(8 lectures)

Learning Outcomes: At the end of this unit student will be able to

* understand Cause, effects and control measures of air pollution.

* understand soil, noise & water pollution.

*get awareness on impact of global warming and acid rains on humans and environment.

*get knowledge on management of solid waste.

*explain disaster management cycle in India.

UNIT V:

Environmental policies

Environment Protection Act – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act .International agreements: Montreal and Kyoto protocols and conservation on Biological Diversity (CBD).

Human communities and Environment

Human population and growth: impacts on environment, human health and welfares.

Environmental movements: Chipko, silent valley.

Environmental Ethics: Role of individual in environmental conservation. Public awareness.

Learning Outcomes: At the end of this unit student will be able to

* explain the enforcement of Environmental legislation

*get awareness on punishments associated with destruction of environment

*Understand the impact of growing population on welfare of society

*get knowledge on how to increase public awareness on protection of environment.

FIELD WORK: Visit to a local area to document environmental assets River/forestgrassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, birds – Study of simple ecosystems-pond, river, hill slopes, etc..

Text Books:

1. Text book of Environmental Studies for Undergraduate Courses by ErachBharucha for University Grants Commission, Universities Press.

2. Environmental studies by Benny Joseph, Mc, Graw Hill Publications.

3. Principles and a basic course of Environmental science for under graduate course by Kousic,KouShic.

4. Text book of Environmental science and Technology by M. AnjiReddy,BS Publication.

Reference Books:

1. Environmental sciences and engineering – J. Glynn Henry and Gary W. Heinke – Printice hall of India Private limited.

2. Environmental Studies by AninditaBasak – Pearson education.

3. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela - Printice hall of India Private limited.

(5 lectures)

(5lectures)